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ABSTRACT

Because of the continually changing environment of a space station, visual feedback is a vital element of a
telerobotic system. A real-time visual servoing system would allow a telerobot to track and manipulate randomly
moving objects. This paper develops methodologies for the automatic selection of image features to be used to visu-
ally control the relative position between an eye-in-hand telerobot and a known object. A weighted criteria function
with both image recognition and control components is used to select the combination of image features which pro-
vides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly mov-

ing carburetor gasket with a visual update time of 70 milliseconds are di_ussed.

I. IntroOuetlon

Most would agree that the eventual goal of a telerobot is to perform dangerous tasks in space which would oth-

erwise require human intervention. To perform these tasks, telerobots must be equipped with many of the sensory
capabilities of humans. Because of the continually changing environment of a space station, vision is undoubtably a
very important sense. Until recently, the primary uses of vision in telerobotics have been for recognizing, locating,
and inspecting stationary parts. Image processing equipment is now reaching the stage where vision may be used as a
feedback signal to control the position and orientation (pose) of the telerobot's end-effector in real time [1][2]. This
visual feedback would allow a telerobot to manipulate and track a randomly moving part without any previous

knowledge of the part's placement or motion.

The type of feedback for visual servoing systems has taken two forms [3]: position-based and feature-based.
The traditional method has been to extract image features i', recognize the desired object by matching image features

to a set of pre-taught features, interpret the pose of the object based on the image features, and use the error between
desired and estimated pose to drive the system. A second method is to use actual image features instead of the part's
interpreted position as the feedback signal for controlling the manipulator [4]. With the proper selection, these
features can be directly related to the control parameters of the robotic system. The savings in time needed to inter-
pret the workpiece's pose from the image features is made possible by determining the desired image features during
an off-line CAD simulation.

In this paper, a resolved motion rate control scheme [5] with feature-based feedback are used to visually servo a
robot manipulator with an eye-in-hand camera over a moving object (see Figure 1). This method of visual feedback
introduces two fundamental questions. How many image features are necessary to control the desired degrees of free-
dom of the manipulator end-effector? And which image features would provide the best control? This paper
addresses these two questions and develops methodologies for the automatic selection of image features used to visu-
ally control the relative pose between the manipulator end-effector and a workpiece. The selection of these features
depends on a blend of image recognition and control criteria. The image recognition criteria include feature robust-
ness, completeness, uniqueness, and cost of feature extraction. The control criteria include system observability, con-
trollability, and sensitivity. A weighted criteria function is used to select the combination of image features which
provides the best control. Both computer simulations and laboratory experiments on a PUMA robot arm were con-
ducted to verify the performance of the feature selection criteria.

This work was supported in part by an IBM research fellowship and in part by the National Science Foundation under Grant CDR 8803017 to the

Engineering Research Center for Intelligent Manufacturing Systems. Any opinions, findings, and conclusions or recommendations expressed in this

article are those of the authors and do not necessarily reflect the views of the funding agencies.

i-In this paper, image features refer to geometric shapes in the camera's image. Examples include circles, edges, comers, and curves.
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II. Differential Relationship between Part's Pose and Image Feature Points

In the resolved motion rate control structure in Figure 1, the changes in image features are transformed into
changes in joint angles. This transformation may be decomposed into a series of three transformations: feature to
camera coordinates, camera to end-effector coordinates, and end-effector to robot joint coordinates. The last two

transformations are well known [6] but the first is not. For our purposes, we will assume that a unique transformation
from camera space to robot joint space exists. Therefore, our ability to control the pose of the robot depends on the
differential transformation from image feature space to camera space. This section concentrates on the differential
transformation from image feature points tt to camera coordinates.

When analyzing the transformations from the camera space to the image feature space, consider the coordinate
frames shown in Figure 2. The following nomenclature is used:

(x, y, z) = position of the part with respect to the camera frame;

(dp, 0, _) = roll, pitch, and yaw orientation of the part with respect to the camera frame;

( Pxl, PYi, PPi) = position of feature point i on the part with respect to the part frame;

( Cxi, CYi, Czi) = position of feature point i on the part with respect to the camera frame;

( txl, tyi) = corresponding position of the point in the image plane;

f= focal length of the camera lens;

_,_= x axis scaling factor in pixels/mm due to camera sampling;

7y = Y axis scaling factor in pixels/mm due to camera sampling; and

(Xo, Yo) = the image plane offset in pixels due to camera sampling.

We assume that the camera characteristics (f, _,_, _,y,Xo, yo) are known. To be able to interpret the 3-D pose of a part,
we have assumed that the spatial relationships between feature points, i.e., (Pxi, PYi, Pzi), ale known from a CAD
model.

Geometric optics are used to model the mapping between the Cartesian space and the image feature space. The
mapping consists of two stages: a thin lens model of the perspective transformation, and a mapping into a two-
dimensional plane caused by camera sampling. The transformation from the camera frame, c, to the image plane, I,
can be written as

or
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where we assume that the blurring effects, the quantization, and the lens distortion effects are negligible.

Using the differential transform technique [6], the change in image positions
in the part's pose (d,, dy, dz, St, By, 5_ ) is [7]
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This expression is suitable for simulation purposes where we want to determine the change in image features given a
small change in the part's pose. However, for control purposes we seek an inverse solution. We would like to know
the change in the part's pose given the change in several feature points in the image. An exact inverse may exist if
three feature points are considered. The linear differential relationship between the change in image feature points

and the change in the part's pose would then be 6 x 6 matrix J.

Notice that this Jacobian matrix depends on the positions of the feature points with respect to the camera. For
the inverse Jacobian matrix J to exist, all three points can not have the same x and y position in the image plane. If

the points are collinear, then a rotation about the line would not be observable. Another restriction is that not all
feature points can be on a plane perpendicular to the focal axis with one of the points located at the focal center.

Again, there exists a rotation in this plane which the camera will not be able to sense.

One final problem still remains. How can we use this transformation if we do not know the actual positions of
the feature points with respect to the camera? In our experiments, two approaches were used. The first was to esti-
mate their positions from their image positions and the known spatial relationships between image points. The second
was to use the desired positions as determined by the CAD simulation. While the latter is self-explanatory, the first
method deserves further development.

The objective is to find the pose of the part with reslx_t to the camera, i.e., (x, y, z, ¢, 0, _), from the a priori
information, ( Pxi, t'Yi, t'zi), and the measured feature points in the image, ( txi, lyi), for i = 1,2, • .. , n, where n is
the number of feature points in the image. Variations of this "location determination problem" have appeared in
several papers [8]. Overdetermined systems of equations are typically used to determine the "best" solution. Least
squares techniques, the Random Sample Consensus paradigm [8], and a generalized Hough transform approach [9]
have been proposed to eliminate errors caused by noisy images and modeling errors.

Unfortunately, many of these methods are too time consuming for real-time use. Instead, we propose using the
following gradient search to continually update the object's pose. This search minimizes the sum of squared distance
errors between four or more actual feature points and the geometrically modeled feature points in the image. Because
of the nature of this search, a fairly good initial estimate of the part's pose is necessary. It should also be noted that

the resulting least squares solution is optimal if the image noise has a Gaussian distribution. However, if there are
outliers in the data, the Random Sample Consensus approach [8] might provide more accurate results.

The objective of this gradient search is to vary the pose of the workpiece until the image positions of the
modeled feature points align with the actual image feature points. In mathematical terms, we would like to minimize

n 1 n

F=i_=lFi = -_i_= 1 (Ixi- Ui)2 + (ly i -Vi) 2 (4)

where (ui, vi) is the actual image position of feature point i. The modeled position of feature point i in the image is
determined from the camera's perspective and sampling Eq. (2), and from the roll, pitch, yaw representation of the

part with respect to the camera [6],

_x,] [cOcOcCsOs_l-sOc_cOsOc_+sCs_] t'xi]

CY'I = ] s¢cO s¢sOsv+c¢cv s,sOcv-c¢sv "Yi|, (5)

where c¢ = cos (¢), s¢ = sh_ (¢), c 0 = cos (0), s0 = s/n (0), c_/=- cos (V), and s_ =-sin (_).

In these equations, the known variables are the camera parameters, (f, 7x, 7y, Xo, yo); the actual image feature

positions, (ui,vl), for i = 1,2, ...,n; and the positions of the features with respect to the part's frame,
( Pxi, t'yi, Pzl), for i = 1,2, • • • , n, where n is the number of features. The unknown variables (the ones we want to
solve for) are the pose of the part, (x,y,z,¢,0,V). For ease of notation, let x= [x,y,z,*,0,_]r,

C C C T
Yi = [ Xi , Yi , zl] , and zi = [ txl , i]T, where the superscript T denotes vector/matrix transpose. Then Eq. (2) can,y
be represented by zi = G(yi), and Eq. (5) can be represented by Yi = Hi(x).

225



Newton'sgradientsearchis used to minimize this error function with respect to the x parameters. The kth itera-
tion of the search is given by

xk = x_-i - F_d (xk) VFT(x_) (6)

where VF is the gradient of F with respect to x and the F_ is the Hessian matrix of F with respect to x.

Because the relationship between the error function and the part's pose consists of a series of composite map-
pings described in Eqs. (2), (4), and (5), the gradient of F is the product of the Jacobian matrices of individual map-
pings. The gradient ofF with respect to x is

VF = _" Fiz, Gy, Hix (7)
i=1

where Fib is the Jacobian matrix of Fi with respect to zi, Gy, is the Jacobian matrix of G with respect to Yi, and Hix is
the Jacobian matrix of Hi with respect to x. The elements of these Jacobian matrices are given in [7].

The chain rule for the Hessian matrix F= is slightly more difficult.

F_, _ Hr Gr i)Fi32(Ixi) aFi _(tyi)
= i--l y, Fi_ Gy, Hix + _xl _ + _ly i _x 2 (8)

where the Hessian matrix of tx i with respect to x is

O2(lXi) O2(Ixi)

_,2 = nr _y2 nix +

and the Hessian matrix of tyi with respect to x is
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(9)

_ly i _2(cXi) _ly i _2(Cyi) _ly i _2(cgi)
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The elements of these Hessian matrices are also in [7].

III. Feature Selection Crlterla

Since the Jacobian obtained in the previous section depends on the features' positions in the 3-D space with
respect to the camera, some features will provide better visual control than others as the part moves with respect to the
camera. In addition to these control issues, image recognition plays an important role in choosing features which are
reliable and robust. This section lists several image recognition and control criteria which should be considered in the
selection process. This is not an all inclusive list and additional criteria could be added at a latter date.

The image recognition criteria used in our feature selection process include [10]:

1. rare features (similar to unique features in [ 11 ]),

2. feature set robustness (similar to likelihood of being seen in [11 ]),

3. computational inexpensive features, and

4. feature set completeness.

To quantitatively evaluate these criteria, a set of measures was designed for the visual servoing experiments. For uni-
formity, these measures were designed to range between zero and one with zero being the most desirable and one
being the least desirable.

A unique feature has an easily identifiable characteristic which differs from other features in the image. Such a
feature is often used to quickly identify an object. This makes the feature very useful for control since the feature can

be quickly re-identified if it is momentarily lost. A measure of feature uniqueness for a set of features {fl, • • • ,f,}
may be written as

I E M_j (ll)
z1(ft, "'" ,f_)= Nm(n-I) iffilj=l

where m isthenumber of featurestobe used forcontrol,n isthetotalnumber of featuresinthe images,N isthe

number ofpossibleviews duringthecontrolprocess,and M,.:isthenumber ofsimilarfeaturestofeatureiinimage j

((3< Mij < n-l). Note thatthemeasure ZI reachesa maximum ofone ifM# = n -I foralliand j and a minimum of
zeroifM 0 = 0 foralliand j.
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In order that the recognition process be resilient to noise, we would like the features to be robust. For feature
extraction systems where the image is scanned for features, feature robustness depends on the size and type of feature
and the method of feature extraction. Usually the larger the feature is in the image, the more robust the feature is. A

general measure of feature robustness may be written as:

1 _ (1 - Q/j) Pij (12)
X2ff_, "'" ,f-)= _ i--1j--1

where 0 <_Gij < 1 is proportional to the size of the feature i in the image j, and 0 _<Pij <- 1 is related to the reliability of
feature extraction method ij. In our experiments, features were restricted to circles in the image. Since the same
method of feature extraction was used throughout the experiments, the reliability factor is Pii = 1 for all i,j. Our
measure of feature robustness for circles was

z2(f x , "'" ,fro) = 1 1 __, rij (12.a)
Nmr,_x i=1 j=l

where rij was the radius of circle j in image j, and rm,x was the maximum radius possible.

The computational expense of features refers to the time and space complexities of the feature extraction pro-
cess. For most cases, space complexity is negligible. Time complexity, on the other hand, is very important for deter-

mining the tracking ability of the visual servoing control. The shorter the time of feature extraction is, the larger the
bandwidth of the control. For feature extraction systems where the image is scanned for features, computational

expense also depends on the size and type of feature and the method of feature extraction. In contrast to the robust-
ness criteria, usually the smaller the feature is in the image, the smaller the computational expense is. A general
measure of computational expense of features may be written as:

1 _ t_,j Xo (13)
_3(fi, "'" ,fro)= _ _--1_--1

where 0 _<x o < 1 is related to the time complexity of the feature extraction method/j for a feature of fixed size. In our
experiments, the location of a circle was verified with four scan lines spanning out from the approximate origin of the
circle to the circle's edge. Again, since the same method of feature extraction was used throughout the experiments,

x/j = 1 for all i,j. Our measure of computational expense for the circles was

1 _., rij . (13.a)
_3(fl, "'" ,fro)= Nmrmx_ i--lj--1

Notice the wade-off between the computational expense and robustness criteria. Smaller circles have less computa-
tional cost with poor feature robustness, while larger circles have better robustness at the expense of computational

COSt.

If a workpiece can be identified from any view point, the set of features is said to be complete. For our cir-
cumstances where we are continually controlling the position of the workpiece with respect to the camera, only a sub-

set of all possible views is necessary. Our measure for feature set completeness is

[_ N ] {01, if feature i isinimagej (14)1 _ u0 where uu = if feature i is not in image j7_(f l , "'" ,fro)= _ j:li=1 , "

The control criteria used in our feature selection process include:

1. Observability of the workpiece's pose through image feature points.

2. Controllability of the workpiece's pose using the inverse Jacobian matrix in section II.

3. Sensitivity of the control to noise.

In the presense of image noise, the gradient search in section II was used to minimize the error in the image

positions of four or more features. Since this error is measurable, it provides a means of evaluating the observability
of the part's pose with respect to the camera. Using the error function F in Eq. (22), our measure for the observability

of the part's pose is

N _F, if F <Fm,_ (15)
xs(f l , "'" ,fro) = 1_____1____, 1_ where f = L F='_ if F > F,_NFraax j=l ' '

and Fr_ is the largest acceptable error.
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If thesamplingtimebetweenimageacquisitionsisshortandthedistancebetweentheactualanddesiredimage
featuresissmall,thedifferentialrelationshipinsectionII couldbeusedtocontroltherelativeposeoftheworkpiece.
Thedesiredchangeincamerapositionwouldbedeterminedbymultiplyingthedifferencebetweenactualanddesired
featuresbytheinverseJacobian.Inthisrespect,wewillsaythattheposeof theworkpieceis"controllable"if the
inverseJacobianexistsandisnon-singular.

Inadditiontocheckingthatauniquesolutionexists,wewouldliketheequationstobewell-conditioned.This
meansthatfor"small"changesinJ and the part's pose, the changes in image feature positions should also be small.
This could be thought of a measure of the control's sensitivity to noise. The condition of the Jacobian matrix J is

c (J) = It _ I II J-111 (16)

where the norm may be I I _ I 1, II _I 2, or II _I-. Moderately small values of c (J) imply that the equations are well-
conditioned. However, large values of c (J) do not necessarily mean that the equations are ill-conditioned. Instead, it
just means that the equations will be ill-conditioned for some changes in the part's pose. In general, we would like to
choose image feature points which would minimize the condition of J. Since the condition of J will become
extremely large as the Jacobian approaches a singular point, the condition may also be used to evaluate the controlla-
bility of the workpiece's pose using the inverse Jacobian matrix. Therefore, a measure for evaluating both the con-
trollability and sensitivity of the system may be written as

_c(J), if j-1 exists and c (J) < Cm,x
N

1 _ _(J) where _(j) =/_Cm,_, if j-I exists and c (J) > cm,x, (17)xt(fl • f 21f 3) _

Nc tm---_j=l

kcm, _ , if j-I does not exist,

and c=,_ is the largest acceptable value for the condition of J.

Another consideration for real-time control is the effect that changes in the feature positions have on the ele-
ments of the Jacobian matrix. To reduce computational costs, it is desirable for the elements of the Jacobian to be

constant or slowly time-varying. If the elements do not change substantially between two camera acquisitions, the
inverse Jacobian does not have to be updated each sample time. Therefore, we would like to choose image feature
points such that the elements of the Jacobian change very little throughout the motion. In other words, we would like
to minimize the sensitivity of J to the change of image feature points,

s(J)=_i__ik___o_.,=o_ _Cxi Jk., + /_Yi JR + _Czi JR

where JR aretheelementsoftheJacobian.Our measureof sensitivitytochange was

, (1 _ .((J) where .((J) = s(J), if s(J) < s=,_ , (19)
z7(fl ,f2 ,f3)= Nsrm-------_j=l kSrntx , if $(J) > Stoat,

and Smu is the largest acceptable value of s(J).

Because of the various conflicting interests of the above measures, a weighted criteria function was used to
select the features which would provide the best control

7

X(A, "'" ,f.) = E w, x_(fl, "" ,f.) (20)
i=1

7

where _ wi = 1 are the weighting factors which are the choice of the designer. Similar to the individual measures,
i=1

the best selection will be the set of features with the smallest overall measure X.

IV. Simulation and Experimental Results

Both computer simulations and laboratory experiments were performed to illustrate the performance of the pro-
posed feature selection criteria. Computer simulations were used to test the performance of the feature selection cri-
teria under ideal conditions and with additive image noise. The experiments verified the simulation results and

showed the usefulness of the feature selection criteria for visually controlling a robot manipulator in real time.

In our experiments, a single Pulnix TM-540 CCD camera mounted on the end-effector of a PUMA 600 robot

was used to visually servo the robot's end-effector over a moving carburetor gasket (the woflcpiece) as shown in Fig-
ure 3. Because of their ease of feature extraction, the circles in the gasket were used as the control features. The
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visual servo control was initiated when the camera was approximately over the gasket in a pre-taught position. After

the gasket was recognized, the locations of three circles in the image were continually updated. The changes in cam-
era pose needed to control the robot were determined by multiplying the difference between the desired and actual
image positions by the inverse Jacobian in section 1I. The changes in camera pose were then converted to the changes
in joint angles using the manipulator's inverse Jacobian [12].

The simulations were modeled after the experiments and their objective was to determine which three image

feature points (circles) of the carburetor gasket out of a total of seven circles (see Figure 3) would be best suited for
controlling the pose of the gasket with respect to the camera. Table 1 lists the positions with respect to the gasket's
frame and the radii of the seven largest holes. The number of feature points was limited to seven to reduce the

number of possible combinations. The desired position and orientation of the gasket with respect to the camera was

(x, y, z) = (-48,63,200) millimeters and (roll, pitch, yaw) = (-90,0,0) degrees, respectively. The camera parameters

are given in Table 2.

First, we evaluated the condition and sensitivity of J for all possible combinations of three circles. We found
that the set of features which minimize c(J) form an equilateral triangle about the origin of the gasket. In particular,
the set of circles {0,3,5} minimized c(J) while the set of circles {0,1,2} maximized c(J). We also found that the con-
dition of J decreases as the gasket is moved closer to the camera. On the other hand, the sensitivity of J to change
was minimized as the feature points moved closer to the focal axis and the x and y image axes. According to this sen-

sitivity criteria, the best set of features would be the set of circles { 1,2,4}. In contrast to the condition of J, the sensi-
tivity of J to change is minimized if the gasket is as far away from the camera as possible. If computation time was a
factor, a weighted sum of the measures g6 and X7 could be used to determine a set of features which would provide
accurate control without updating the inverse Jacobian.

Next, we considered the tracking response of the camera for the two sets of features, {0,3,5} and {0,1,2}. For
both sets of features, circle 6 was used as a fourth point for determining location. To test the control process, a ramp

input in position and orientation was applied to the gasket's pose. The change in the x, y, and z directions was 5 mil-
limeters per sample. The change in the roll, pitch, and yaw of the gasket was 0.9 degrees per sample. If our system
was operating at video rate (30 Hz - both fields), this would correspond to a positional velocity of 15 centimeters per
second and a rotational velocity of 27 degrees per second. Several cases were run with and without image noise.

First consider the ideal case with no image noise. Table 3 shows the mot mean square (RMS) error between the
desired and actual position and orientation of the workpiece with respect to the camera. Three schemes were used to

update the Jacobian matrix. In column 1, the Jacobian was updated with the actual positions of the feature points. In
column 2, the Jacobian was updated only once with the desired positions of the feature points. In column 3, the Jaco-
bian was updated with the estimated positions of the feature points using the methods in section II. The following
conclusions were made from the ideal case:

1. Updating the Jacobian with the actual positions provides the best control.

2. When the actual or desired positions of the features were used, the set of features {0,3,5} performed as
well as the feature set {0,1,2}.

3. As predicted by the large condition of the Jacobian for feature set {0,1,2}, it was difficult to estimate the
part's pose from the feature set {0,1,2}. Therefore, for estimation purposes it is best to choose a set of
feature points with a small condition number, such as the feature set {0,3,5}.

Next consider the same simulation except add Gaussian image noise with a standard deviation of 0.5 pixels.
The RMS error for this case is shown in Table 4. In addition to the same columns as in Table 3, a fourth column

shows the results when seven points are used to estimate the pose of the workpiece. The columns with ** indicate that

the workpiece was lost before the simulation was completed. The following conclusions can be made from the noisy

image case:

1. Updating the Jacobian with the desired positions provides the best control.

2. Even when using desired or actual positions to update the Jacobian, image noise has a costly effect on the
resolved motion rate control of a set of features with a small condition number, such as the feature set

{0,1,2}. Therefore, for control purposes it is best to choose a set of feature points with a small condition
number, such as the feature set {0,3,5}.

3. The more points used to estimate the part's pose, the better the estimate will be.

In the experiments, the camera was first moved to the desired position over the gasket and the selection criteria
were evaluated as shown in Table 5. The criteria weighting factors were set to {wl, w2, w3, w4, ws, wt, w7 } =

{0.1, 0.15, 0.05, 0.1, 0.2, 0.2, 0.2}. The computation time of feature extraction was weighted less than the other cri-
teria since there was not a noticeable difference in delay time when extracting one circle over the next. The max-

imum acceptable pose estimation error, condition, and sensitivity were Fm_x = 100, Cm,_ = 100,000, and sm, x = 68.
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Afterthefeatureswereselected,thegasketwasplacedonaconveyorbeltmovingataspeedof2.7centimeters
persecondin they and z directions of the world coordinates. Using the resolved motion rate visual feedback and a
feature-based trajectory generator [12], the PUMA robot tracked the gasket. The feature-based trajectory generator
had a smoothing effect on image noise by spreading out the change in image features over time. To speed up real-
time computation and avoid estimation noise effects the desired positions of the feature points were used to compute
the Jacobian. This works satisfactorily if the feature points are already in the vicinity of the desired positions.

In Figure 4, the first 37 seconds show the ramp response of the system along the z direction while the last 10
seconds show the steady-state error when the conveyor belt was stopped. The response in the y direction was a simi-
lar ramp shaped graph. The responses in the x direction and the orientation angles were small oscillatory signals
about the desired values. The maximum positional errors in thex, y, and z directions were 18.4, 21.6, and 8.0 millim-

eters, respectively. The maximum orientation errors in roll, pitch, and yaw were 1.5, 2.6, and 2.2 degrees, respec-
tively. The oscillation in the x position and the orientation angles can be attributed to image noise and the feedback
delay time. In order to increase the vision sampling, the verification process used to update the position of the circles
was very simple. Unfortunately, it was also fairly noisy. During the servoing process, the circles in the image were
located with an accuracy of + 5 pixels. The delay time between when the image was taken and when the robot actua-
tion began was approximately 100 milliseconds.

V. Conclusion

Methodologies for the automatic selection of image features used to visually control the relative pose between
the manipulator end-effector and a workpiece were developed and analyzed. A resolved motion rate control scheme

was used to update the robot's pose based on the position of three features in the camera's image. The selection of
these three features for control was based on a weighted criteria function with both image recognition and control
components. Because of the real-time nature of the control process, it is important to find reliable image features
which can be quickly extracted from the image. Of particular importance for resolved motion rate control was the

condition of the Jacobian matrix relating the differential change in the workpiece's pose to the corresponding dif-
ferential change in the image feature points. To minimize the effects of image noise on the control, the condition of
the Jacobian should be minimized. In the simulations and experiments, we found that estimating the pose of the
workpiece was a time consuming and noise sensitive process. Because of this, the best tracking results were obtained
by using the desired feature locations to compute the Jacobian instead of the estimated locations.
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Table 1. Positions and radii of the circles

with respect to the gasket's frame.

Positions and radii in millimeters

No. ;8 Y z radius5 0 5

1 98 42 0 3

2 93 80 0 3

3 46 91 0 3

4 37 81 0 5
5 28 6 0 3

6 28 39 0 3

Table 2. Intrinsic parameters of the camera.

Parameter Symbol

Focal length f
X scale factor y_
Y scale factor Vr

xo

Value

8.0 mm

-67.2832 pixels/mm

-84.7279 pixels/mm

X focal center 240.0 pixels

Y focal center yo 240.0 pixels

Control
Features

{0,3,5}

Table 3. Ideal case: RMS error of gasket with res _ct to the camera.

Experiment #1 #2 #3

Jacobian Update Actual Desired

RMS Position (mm) 0 0
Estimation

Error Orientation (deg) 0 0
RMS Position (mm) 0.2847 0.3526
Control

Error Orientation (deg) 0.1493 0.1722

RMS Position (mm) 0 0
Estimation

Error Orientation (deg) 0 0 4.5745

RMS Position (nun) 0.1987 0.1798 0.9727
Control

Error Orientation (deg) 0.0360 0.0430 0.2940

* Jacobian updated only if least squares search error F is small.

{0,1,2}

Estimated *

0.000O34

0.000032

0.2847

0.1493

7.6440

Table 4. Image noise case: RMS error of gasket with respect to the camera. The image noise had a Nor-
mal distribution with zero mean and a standard deviation of 0.5 pixels. The table shows the mean
position and orientation RMS error of 10 trials.

Control
Features

RMS
Estimation
Error

{0,3,5} RMS

Control

Error
RMS
Estimation
Error

{o,i,2} RMS
Control
Error

Experiment #1 #2 #3 #4

Jacobian Update Actual Desired Estimate #1 * Estimate #2 **

Position (ram) 0 0 2.5663 2.2569

Orientation (deg) 0 0 2.7393 2.1801

Position (mm) 1.2708 1.1542 1.5735 1.4578

Orientation (deg) 1.3395 1.2593 1.5454 1.4490

Position (mm) 0 0 ** 00

* Estimate #1
** Estimate #2

Orientation (deg)
Position (mm)

Orientation (dag)

0

tO

0

tO tO

tO tO tO

implies that four circles were used to estimate the gasket's pose.
implies that seven circles were used to estimate the gasket's pose.
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Table 5. The best combinations of features with weights {0.1, 0.15, 0.05, 0.1, 0.2, 0.2, 0.2}.

#1

0

0

0

0
0

0

1

0

0

0

Feature Selection Table For Experiments

Circles Selection Criteria

#2 #3 #4 X1 X2 Zs X4 Z5 X6 X7
3 5 4 0.341 0.219 0.781 0.000 0.023 0.110 0.919 0.316

4 5 3 0.341 0.219 0.781 0.000 0.033 0.148 0.916 0.325

2 4 3 0.341 0.219 0.781 0.000 0.041 0.139 0.919 0.326

3 6 4 0.341 0.216 0.784 0.000 0.013 0.171 0.917 0.326
4 5 6 0.341 0.237 0.762 0.000 0.047 0.133 0.916 0.327

2 3 4 0.341 0.219 0.781 0.000 0.042 0.159 0.921 0.330

4 5 0 0.341 0.235 0.765 0.000 0.042 0.178 0.915 0.335

4 6 3 0.341 0.216 0.784 0.000 0.024 0.220 0.915 0.338

2 6 4 0.341 0.238 0.762 0.000 0.106 0.130 0.917 0.338

4 5 2 0.341 0.241 0.759 0.000 0.119 0.117 0.916 0.339

230 .JO0

/

:o2.5:oj de_/actuired_/ al

SO .]CSS

Time (seconds)

Figure 4. Robot end-effector's z position while tracking the gasket in the experiments.
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